
Asymmetric Alternating Bit Protocol

April 2004

1 Introduction

Alternating Bit Protocol is well known. But, it is a symmetric protocol, for two participants
of a same rank/level.

The protocol describet here is an asymmetric variant of the alternating bit protocol. It
is to be used when one of the participants is polling the other. That participant is usually
called the master. Thus we need to examine both the master and the slave side on the
communication bus.

One master can communicate with several slaves over the same bus. For each slave,
the master has a separate protocol instance.

In the following description, the check for correct messages transfer is assumed to be
done via CRC, but, that is just a common use case. The protocol does not define what
method will be used for this check - for example, the Internet Checksum is an option.

2 From the master viewpoint

When polling the slave for the first time, the master sets the FIB bit to 1.
Whenever it’s polling the slave, the master checks if there are any messages to send

to said slave and sends one if there are. If there are not, master will send a fill-in (empty)
message. In any case, it sends the FIB bit as intended.

After transmitting, the master awaits a response from the slave.
If the response times out, or it arrives with an error (CRC error, foremost), FIB bit will

stay ”as it were” and message sent will not be released. Thus, it would be sent again on
the next poll for this slave. Of course, the message with an error is ignored.

If the response arrives, master checks the received FIB bit against the sent one. If
they are the same, it is as if the response timed out for the purposes of this protocol (for
diagnostics, the slave is ”live”).

If the received FIB bit is different (inverted/alternated) from the sent one, then master
assumes that the message was received correctly on the slave side and the message sent
will be released. Master will then invert the FIB bit for this slave, to prepare for the next
poll.

Thus ends a poll for one slave and the master goes on to the next one. Once all other
slaves are polled, master will cycle back to this one.

1

For diagnostic purposes, if a slave does not respond to the poll several times in a row,
it is deemed ”down”.

3 From the slave viewpoint

During initialization, the slave sets its FIB bit to 1.
If it received a message correctly (CRC check good), slave checks if the received FIB

bit is the same as or different then its own FIB bit.
If the FIB is as expected, this means that the received message is a new one and that

our message (from the last poll) had been accepted. The slave releases that message from
the last poll and inverts/alternates the FIB bit. Then it sends, in response to the poll, its
own message, or a fill-in (empty) message with such FIB bit.

If the FIB is different from expected, this means that the master did not receive the
response correctly on the last poll. The just received message is ignored and the slave
sends the same message as in the last poll, keeping the same FIB bit as in that last poll.

If the message is received with a CRC error, the handling is similar - slave sends the
same message as in the last poll, with the same FIB bit (and of course ignores the message
with CRC error).

4 Discussion

If the slave sets FIB to 0 during initialization, protocol will suffer the loss of the very first
message. But, this need not be the case in practice, because the initialization of the slave
is asynchronous to the initialization of the master. Thus, the actual setting of the FIB to
1 during slave initialization is not a 100% guarantee that the first message would not get
lost.

Therefore, when the master does the first poll, it should send an empty (fill-in) mes-
sage, so there are no qualms about losing it.

Unfortunately, even that will not solve every possible case. Since the initialization can
take a lot of time and during it a lot of stuff is done, it is still possible that timing is such
that a messages gets lost. Solving that would be possible, but it is assumed that the slave
does not get initialized often, so it’s not worth the effort.

5 SPIN model of the protocol

We present the Promela source code for the SPIN model of this protocol. It should be
saved to a seperate file, say FIB_BIT_KOM (Promela files usually don’t have an extension).
If such file is ”run through” SPIN model checker, it will show that the protocol is sound.

This source code is written in the SRCE system ”lingo”, thus KOP is the master and
RP is the slave in the context of the protocol we describe in this document.

Model has three processes:

1. KOP - the master

2. RP - the slave (only one, as it is the same for all and any RP)

3. communication bus, there to simulate communication errors

2

SPIN model checker can establish that the protocol is transferring messages correctly
(in order) and it is not deadlocking. To avoid having SPIN report an infinitely bad
communication bus (which loses all messages) as a protocol deadlock, we have labeled
the apropriate lines of code with progress... labels.

/ ∗ ∗ Max number o f messages , must be more than two . ∗ /
define MAX 10

/ ∗ ∗ He lpe r s y m b o l i c d e f i n i t i o n o f ” bad CRC” ∗ /
define BAD CRC 0

/ ∗ ∗ He lpe r s y m b o l i c d e f i n i t i o n o f ” c o r r e c t / good CRC” ∗ /
define GOOD CRC 1

/ ∗ ∗ KOP, t h e master , i s p o l l i n g RPs , t h e s l a v e s on t h e bus . For
t h i s model , we need on ly one RP , as i t i s t h e same f o r a l l .
@param in Channel on which KOP r e c e i v e s me s s a g e s
@param out Channel on which KOP s e n d s me s s a g e s
∗ /

proctype kop (chan in , out)
{

byte by ; / ∗ Message t o send − f o r our t e s t , a number ∗ /
b i t f i b ; / ∗ ”Our” FIB ∗ /
b i t f ib pr im ; / ∗ FIB in t h e r e c e i v e d r e s p o n s e message ∗ /
byte by prim ; / ∗ The r e c e i v e d r e s p o n s e message ∗ /

by = MAX − 1 ; / ∗ In t h e f i r s t i t e r a t i o n becomes 0 ∗ /
f i b = 1 ;

do
: : by = (by + 1) % MAX;

p o l l :
out ! f ib , by , GOOD CRC;

i f
: : timeout −> goto p o l l / ∗ no r e s p o n s e ∗ /
: : in ? f ib prim , by prim , BAD CRC −> goto p o l l
: : in ? f ib prim , by prim , GOOD CRC −>

i f
: : (f i b == f ib pr im) −> goto p o l l
: : (f i b != f ib pr im) −>

a s s e r t (by prim == (by + 1) % MAX) ;
goto progress

f i
f i ;

progress :
f i b = ! f i b

od
}

3

/ ∗ ∗ RP p r o c e s s on t h e bus . RP r e s p o n d s t o p o l l i n g . Th i s model i s
not c o m p l e t e l y a c c u r a t e , RP has a message queue , thus t h e
r e s p o n s e can ’ t be t o t h e j u s t r e c e i v e d message . But , t h a t i s
not o f t h e e s s e n c e he r e , m e s s a g e s h e r e a r e j u s t h e l p e r
c o u n t e r s t o c h e c k t h e v a l i d i t y o f t h e p r o t o c o l .
@param in Channel on which RP r e c e i v e s me s s a g e s
@param out Channel on which RP s e n d s me s s a g e s
∗ /

proctype rp (chan in , out)
{

b i t f i b ; / ∗ ”Our” FIB ∗ /
byte by ; / ∗ Message t o r e c e i v e − f o r our t e s t , a number ∗ /
b i t f ib pr im ; / ∗ FIB o f t h e r e c e i v e d message ∗ /
byte by prim ; / ∗ The r e c e i v e d message ∗ /

f i b = 1 ;
by = 0 ;

do
: : in ? f ib prim , by prim ,BAD CRC −> out ! f ib , by ,GOOD CRC
: : in ? f ib prim , by prim ,GOOD CRC −>

i f
: : (f ib pr im != f i b) −> out ! f ib , by ,GOOD CRC
: : (f ib pr im == f i b) −>

a s s e r t (by prim == by) ;
by = (by + 1) % MAX;

progress : f i b = ! f i b ;
out ! f ib , by ,GOOD CRC;

f i
od

}

/ ∗ ∗ The communicat ion bus . I t i n t r o d u c e s random e r r o r s ,
e i t h e r message l o s s o r message c o r r u p t i o n which c a u s e s
bad CRC c h e c k . Of c o u r s e , t h i s doesn ’ t s i m u l a t e t h e
e r r o r s t h a t CRC would not c a t c h , but t h i s model d o e s
not d e f i n e t h e a c t u a l (CRC) check , s o i t ’ s j u s t up t o
t h e i m p l e m e n t e r t o use t h e b e s t p o s s i b l e c h e c k t o c a t c h
t h e most amount o f e r r o r s .

@param k o p i n Channel on which KOP r e c e i v e s m e s sa g e s
@param k o p o u t Channel on which KOP s e n d s m es s a g e s
@param r p i n Channel on which RP r e c e i v e s m es s a g e s
@param r p o u t Channel on which RP s e n d s m e s s a g e s
∗ /

proctype commbus(chan kop in , kop out , rp in , rp out)
{

b i t f i b ;

4

byte by ;
b i t c r c ;

do
: : kop out ? f ib , by , c r c −>

i f
: : r p i n ! f ib , by ,GOOD CRC
: : r p i n ! f ib , by ,BAD CRC; p r o g r e s s e r r 1 : skip ;
: : skip ; p r o g r e s s e r r 1 : skip ;
f i

: : rp out ? f ib , by , c r c −>
i f
: : kop in ! f ib , by ,GOOD CRC
: : kop in ! f ib , by ,BAD CRC; p r o g r e s s e r r 2 : skip ;
: : skip ; p r o g r e s s e r r 2 : skip ;
f i

od
}

i n i t {
chan kop tx = [1] of { bit , byte , b i t } ;
chan rx kop = [1] of { bit , byte , b i t } ;
chan r p t x = [1] of { bit , byte , b i t } ;
chan rx rp = [1] of { bit , byte , b i t } ;

atomic {
run kop (rx kop , kop tx) ;
run commbus(rx kop , kop tx , rx rp , r p t x) ;
run rp (rx rp , r p t x) ;

}

}

5

	Introduction
	From the master viewpoint
	From the slave viewpoint
	Discussion
	SPIN model of the protocol

