
Ensuring protected access to shared data

November 2014

1 lockstrap

A few macros to keep data and it’s lock together, for C++11 and later.
In multithreaded programming, locks (mostly mutexes) are used a lot. Actually, a lot

more than they should be, but that is another topic.
The problem with locks is that there is no way to associate a lock with some data.

Let’s say you have class like this:

c l a s s User {
i n t a ;
f l o a t b ;
std : : s t r i n g c ;
s td : : vector<long> x ;

s td : : mutex m;
/ / . . .

} ;

Quick question: Which data does ‘m’ protect?
You can’t tell. It might be all, but then it might not. It would be even worse if there

were two mutexes in that class. You have to actually look at the code to figure it out.
And code can be a mess. You can resort to comments (good luck with that) or naming
conventions (which quickly get out of hand).

But even if your comments are good or naming conventions are feasable, there is
nothing preventing bad usage - protecting data when it shouldn’t be and vice versa.

Well, these “lock-strap” macros provide a way to fix that. I know, I wish they were not
macros, but I’m pretty certain that with C++11 through C++23 there is no way to avoid
macros and keep a nice syntax for the users.

1.1 Usage

Using the same example as before:

include ” l o c k s t r a p . h”
c l a s s User {

1

c l a s s Data {
i n t a ;
f l o a t b ;
std : : s t r i n g c ;
LOCKSTRAP(Data , s td : : mutex , a , b , c) ;

} d ;
std : : vector<long> x ;
/ / . . .

} ;

So, we introduced a class to hold the data which is protected by a mutex (which
is declared in the ‘Data’ class by the “LOCKSTRAP” macro). The vector ‘x’ is, now
obviously, not protected by the mutex.

Since ‘Data’ is a class, obviously you can’t access ‘a’, ‘b’ and ‘c’ from the outside.
The ‘LOCKSTRAP’ macro defines two helper member functions for such purposes - the
‘access’ and the template ‘with’.

This is how you would use them in some User member function(s):

void User : : f ()
{

auto a l = d . a c c e s s () ;
/ / a t t h i s p o i n t , mutex i s l o c k e d , you can a c c e s s and do . .
/ / w h a t e v e r .
a l . a = 3 ;
a l . b = a l . a / 2 ;
/ / mutex w i l l be u n l o c k e d when ’ a l ’ g o e s out o f s c o p e h e r e

}

void User : : g ()
{

/ / In C++14 , ’ au to ’ can r e p l a c e ’ User : : l o c k e r ’
d . with ([] (User : : l o c k e r l) {

/ / a t t h i s p o i n t , mutex i s l o c k e d , you can a c c e s s and do
. .

/ / w h a t e v e r .
l . a = 3 3 ;
l . c . append (std : : t o s t r i n g (l . b)) ;
/ / mutex w i l l be u n l o c k e d when ’ l ’ g o e s out o f s c o p e

h e r e
}) ;
/ / with () a c c e p t s any c a l l a b l e o b j e c t , even a f u n c t i o n

p o i n t e r .
}

You can combine both ‘access’ and ‘with’ in the same function, but that would be
strange.

1.2 The simple implementation

Simple implementation has very similar usage. Include “lockstrap simple.h” instead of
“lockstrap.h” and use “LCKSTRAPSIMP” instead of “LOCKSTRAP” macro, and when

2

accessing data always use function call syntax. Here’s the full example with simple
implementation:

include ” l o c k s t r a p s i m p l e . h”
c l a s s User {

c l a s s Data {
i n t a ;
f l o a t b ;
std : : s t r i n g c ;
LCKSTRAPSIMP(Data , s td : : mutex , a , b , c) ;

} d ;
std : : vector<long> x ;
/ / . . .

} ;

void User : : f ()
{

auto a l = d . a c c e s s () ;
a l . a () = 3 ;
a l . b () = a l . a () / 2 ;

}

void User : : g ()
{

d . with ([] (User : : l o c k e r l) { l . c () . append (std : : t o s t r i n g (l . b
())) ; }) ;

}

You can use the “simple” implementation for some classes and the regular for others,
but doing that in the same file would be a little confusing to the reader.

1.3 Why use simple at all?

Well, you may prefer this syntax with all those (), as it hints that this is not your regular
access.

Even if you don’t, It compiles faster. How faster depends, on how you use it. But,
in basic tests when code did little else but access this data, it was about 15% faster. With
more code non-lock related, the relative speedup will be smaller, but, OTOH, if you have
a lot of code with locking than it might be a significant absolute speedup.

In theory, the “regular” implementation may generate worse code, because it de-
clares a “shadow” reference for each protected data member. In all tests, especially with
optimizations on, the generated code is actually the same, as everything is inlined.

Also, for most compilers, simple will give somewhat nicer errors on incorrect usage.

1.4 Remarks

The lock doesn’t have to be a mutex. It can be anything that implements the “Lockable”
concept, that is, has a “lock()” and “unlock()” member functions.

Since you have to “mention” every data member, you may make a mistake:

3

• If you omit a member, compiler will give you a “class XXX::locker does not have a
member . . . ” error which is a good hint that you have to add it.

• If you give bad data member name, compiler will give an error like “XXX::bad name
doesn’t exist”, which is also a good hint

The initial implementation can handle up to 9 data members. It is easy to add more,
look at the comments in the headers.

Obviously, this was not designed to handle static data (though it will work, to an
extent) or member functions - which will give strange compiler errors - well, you know
that member functions can’t be protected by a mutex, right?

1.5 Implementation

Implementation is nothing special:

• The macro generates a lock data member in class itself
• Then it generates a nested class named “locker” which will be used to access the

data
• For simple implementation, the “locker” has a reference to the “real” object and

has a bunch of member functions with the same names as the data members of the
“real” class

• For regular implementation, the “locker” has a reference for each data member of
the real class, with exactly the same name

• In any case, “locker” will lock the lock on construction and unlock on destruction
(yup, RAII)

• The macro generates an “access” member function which will return a “locker”
object

• The macro generates a “with” member template function which will accept a tem-
platized callable parameter and create a “locker” object which it will pass to that
parameter

1.6 Discussion

1.6.1 Why can’t this be done with templates?

Well, you may do something like a “smart pointer” if you make the data “public” in the
“real” class, but that defies the purpose, as the data is now public an anyone can use it
without the lock.

If you keep the data private, then you may use something like a tuple, but that doesn’t
generate the symbol names, so you would use different (and rather ugly) syntax to access
the data. There are other tricks to be done here, but all with the same “tuple” problem.

C++11 makes the implementation and usage a lot easier, with variable arguments
macros and decltype. Actually, with C++14, you can use ‘auto’ instead of ‘decltype(ME::x)’
when declaring the “forwarding functions” in the “simple” implementation.

1.6.2 C++03

One could do similar stuff in C++03, but would have to re-declare the types of all data
(and call the macro “version” with the right number of data):

4

c l a s s Data {
i n t a ;
f l o a t b ;
std : : s t r i n g c ;
LCKSTRAPSIMP3(Data , s td : : mutex , int , a , f l o a t , b , s td : :

s t r i n g , c) ;
} d ;

or go with something like:

DECL LOCKSTRAP CLASS(User , s td : : mutex)
DECL LOCKSTRAP MEMBER(int , a) ;
DECL LOCKSTRAP MEMBER(f l o a t , b) ;
END LOCKSTRAP CLASS ()

Herb Sutter has a C++03 design which is similar to this in an article on DrDobbs
Journal. Last known URL:

http://www.drdobbs.com/windows/associate-mutexes-with-data-to-prevent-r/224701827
Except the rather ugly macro syntax, his design actually exposes lock() and unlock(),

which makes it error prone (you may access the data without locking). He does check
(that lock is locked/held) with an assert, but, I believe that lockstrap design is better, as
asserts aren’t there in release configuration, and mutlithreading bugs are notorious for
manifesting (only) in the field (and you ship release configuration to the field). Also, even
in the debug build, this assert is not enough. That is, you may assert that lock is locked,
but, by the time you access the data, lock might get unlocked (from another thread, of
course).

1.6.3 Is parameter of the with() to be passed by value or rvalue?

Well, it is passed as a rvalue by design. Whether you declare it as value parameter, like:

d . with ([] (User : : l o c k e r l) {

or rvalue parameter, like:

d . with ([] (User : : l o c k e r &&l) {

does not matter much. In theory it might, but in practice, especially if optimizations
are turned on, this produces the same machine/binary code.

2 Regular/full implementation

This should be saved to lockstrap.h.

i f ! defined INC LOCKSTRAP
define INC LOCKSTRAP

/ ∗ These i n t e r n a l macros do ” s t e p macro d e v e l o p m e n t ” . Don ’ t use them
o u t s i d e t h i s h e a d e r . But , i f you e v e r make a c l a s s wi th more than
e l e m e n t s (thus s t e p s) p r e s e n t h e r e , j u s t do some copy p a s t i n g and
add more s t e p s . . .

∗ /

5

define LCKSTRPDCL1(ME, x) decl type (ME: : x) &x
define LCKSTRPDCL2(ME, x , . . .) dec l type (ME: : x) &x ; LCKSTRPDCL1(ME,

VA ARGS)
define LCKSTRPDCL3(ME, x , . . .) dec l type (ME: : x) &x ; LCKSTRPDCL2(ME,

VA ARGS)
define LCKSTRPDCL4(ME, x , . . .) dec l type (ME: : x) &x ; LCKSTRPDCL3(ME,

VA ARGS)
define LCKSTRPDCL5(ME, x , . . .) dec l type (ME: : x) &x ; LCKSTRPDCL4(ME,

VA ARGS)
define LCKSTRPDCL6(ME, x , . . .) dec l type (ME: : x) &x ; LCKSTRPDCL5(ME,

VA ARGS)
define LCKSTRPDCL7(ME, x , . . .) dec l type (ME: : x) &x ; LCKSTRPDCL6(ME,

VA ARGS)
define LCKSTRPDCL8(ME, x , . . .) dec l type (ME: : x) &x ; LCKSTRPDCL7(ME,

VA ARGS)
define LCKSTRPDCL9(ME, x , . . .) dec l type (ME: : x) &x ; LCKSTRPDCL8(ME,

VA ARGS)

/ ∗ D i t t o . . . ∗ /
define LCKSTRPINIT1 (ME, x) , x (me . x)
define LCKSTRPINIT2 (ME, x , . . .) , x (me . x) LCKSTRPINIT1 (ME, VA ARGS)
define LCKSTRPINIT3 (ME, x , . . .) , x (me . x) LCKSTRPINIT2 (ME, VA ARGS)
define LCKSTRPINIT4 (ME, x , . . .) , x (me . x) LCKSTRPINIT3 (ME, VA ARGS)
define LCKSTRPINIT5 (ME, x , . . .) , x (me . x) LCKSTRPINIT4 (ME, VA ARGS)
define LCKSTRPINIT6 (ME, x , . . .) , x (me . x) LCKSTRPINIT5 (ME, VA ARGS)
define LCKSTRPINIT7 (ME, x , . . .) , x (me . x) LCKSTRPINIT6 (ME, VA ARGS)
define LCKSTRPINIT8 (ME, x , . . .) , x (me . x) LCKSTRPINIT7 (ME, VA ARGS)
define LCKSTRPINIT9 (ME, x , . . .) , x (me . x) LCKSTRPINIT8 (ME, VA ARGS)

/ / The g e n e r i c macro t o h e l p with ” s t e p macro d e v e l o p m e n t ” . I f you
/ / e v e r make a c l a s s wi th more than e l e m e n t s p r e s e n t he r e , j u s t add
/ / p a r a m e t e r s b e f o r e t h e ”NAME” p a r a m e t e r
define GET MACRO(1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , NAME, . . .) NAME

/ ∗ ∗ D e f i n e a s a f e l o c k ” s t r a p ” (o r band , b i n d e r . . .) o v e r d a t a o f a
c l a s s . I t w i l l add a ” l o c k o b j e c t ” o f t h e t y p e o f your c h o i c e t o
your c l a s s and e n a b l e you t o a c c e s s t h e d a t a on ly under t h a t l o c k .

Th i s i s t h e macro t o be used o u t s i d e t h i s heade r , l i k e t h i s :

c l a s s MyClass {
i n t my int ;
f l o a t m y f l o a t ;
LOCKSTRAP(MyClass , s t d : : mutex , my int , m y f l o a t) ;

} ;

Then , use t h e c l a s s l i k e t h i s :

MyClass x ;
au to x l = x . a c c e s s () ;
x l . my int = 5 ;
s t d : : c o u t << x l . my int << s t d : : e n d l ;
x . wi th ([] (MyClass : : l o c k e r l) { l . my int = 6 }) ;
/ / or , in C++14:
x . wi th ([] (au to l) { l . my int = 6 }) ;

6

Remember t o k e e p t h e GET MACRO ” c a l l s ” up−to−d a t e wi th t h e maximum
number o f s t e p s s u p p o r t e d .

@param ME The name o f t h e c l a s s we a r e add ing a ” l o c k s t r a p ” t o
@param LOCK The t y p e o f t h e l o c k (imp l ements t h e ” L o c k a b l e ”
c o n c e p t − i . e . , has a ” l o c k () ” and ” u n l o c k () ” member f u n c t i o n s .)

∗ /
define LOCKSTRAP(ME, LOCK, . . .)

\

private : LOCK d locker ;
\

public : c l a s s l o c k e r {
\

ME &d me ;
\

public :
\

GET MACRO(VA ARGS , LCKSTRPDCL9, LCKSTRPDCL8, LCKSTRPDCL7, LCKSTRPDCL6
, LCKSTRPDCL5, LCKSTRPDCL4, LCKSTRPDCL3, LCKSTRPDCL2, LCKSTRPDCL1) (ME,

VA ARGS) ; \
l o c k e r (ME &me) : d me (me) GET MACRO(VA ARGS , LCKSTRPINIT9 ,

LCKSTRPINIT8 , LCKSTRPINIT7 , LCKSTRPINIT6 , LCKSTRPINIT5 , LCKSTRPINIT4 ,
LCKSTRPINIT3 , LCKSTRPINIT2 , LCKSTRPINIT1) (ME, VA ARGS) \

{ me. d locker . lock () ; }
\

˜ l o c k e r () { d me . d locker . unlock () ; }
\

} ;
\

l o c k e r a c c e s s () { return l o c k e r (∗ t h i s) ; }
\

template <typename F> void with (F f) { f (l o c k e r (∗ t h i s)) ; }

endif / / ! d e f i n e d INC LOCKSTRAP

3 Simple implementation

This should be saved to lockstrap_simple.h.

i f ! defined INC LCKSTRAP SIMPLE
define INC LCKSTRAP SIMPLE

/ ∗ These i n t e r n a l macros do ” s t e p macro d e v e l o p m e n t ” . Don ’ t use them
o u t s i d e t h i s h e a d e r . But , i f you e v e r make a c l a s s wi th more than
e l e m e n t s (thus s t e p s) p r e s e n t h e r e , j u s t do some copy p a s t i n g and
add more s t e p s . . .

∗ /
define LCKSTRAPSIMP1(ME, x) decl type (ME: : x) &x () { return d me . x ; }
define LCKSTRAPSIMP2(ME, x , . . .) dec l type (ME: : x) &x () { return d me . x ; }

LCKSTRAPSIMP1(ME, VA ARGS)
define LCKSTRAPSIMP3(ME, x , . . .) dec l type (ME: : x) &x () { return d me . x ; }

LCKSTRAPSIMP2(ME, VA ARGS)
define LCKSTRAPSIMP4(ME, x , . . .) dec l type (ME: : x) &x () { return d me . x ; }

LCKSTRAPSIMP3(ME, VA ARGS)

7

define LCKSTRAPSIMP5(ME, x , . . .) dec l type (ME: : x) &x () { return d me . x ; }
LCKSTRAPSIMP4(ME, VA ARGS)

define LCKSTRAPSIMP6(ME, x , . . .) dec l type (ME: : x) &x () { return d me . x ; }
LCKSTRAPSIMP5(ME, VA ARGS)

define LCKSTRAPSIMP7(ME, x , . . .) dec l type (ME: : x) &x () { return d me . x ; }
LCKSTRAPSIMP6(ME, VA ARGS)

define LCKSTRAPSIMP8(ME, x , . . .) dec l type (ME: : x) &x () { return d me . x ; }
LCKSTRAPSIMP7(ME, VA ARGS)

define LCKSTRAPSIMP9(ME, x , . . .) dec l type (ME: : x) &x () { return d me . x ; }
LCKSTRAPSIMP8(ME, VA ARGS)

/ / The g e n e r i c macro t o h e l p with ” s t e p macro d e v e l o p m e n t ” . I f you
/ / e v e r make a c l a s s wi th more than e l e m e n t s p r e s e n t he r e , j u s t add
/ / p a r a m e t e r s b e f o r e t h e ”NAME” p a r a m e t e r
define GET MACRO(1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , NAME, . . .) NAME

/ ∗ ∗ D e f i n e a s a f e l o c k ” s t r a p ” (o r band , b i n d e r . . .) o v e r d a t a o f a
c l a s s . I t w i l l add a ” l o c k o b j e c t ” o f t h e t y p e o f your c h o i c e t o
your c l a s s and e n a b l e you t o a c c e s s t h e d a t a on ly under t h a t l o c k .

Th i s i s t h e macro t o be used o u t s i d e t h i s heade r , l i k e t h i s :

c l a s s MyClass {
i n t my int ;
f l o a t m y f l o a t ;
LCKSTRAPSIMP(MyClass , s t d : : mutex , my int , m y f l o a t) ;

} ;

Then , use t h e c l a s s l i k e t h i s :

MyClass x ;
au to x l = x . a c c e s s () ;
x l . my int () = 5 ;
s t d : : c o u t << x l . my int () << s t d : : e n d l ;
x . wi th ([] (MyClass : : l o c k e r l) { l . my int () = 6 }) ;
/ / or , in C++14:
x . wi th ([] (au to l) { l . my int () = 6 }) ;

Remember t o k e e p t h e GET MACRO ” c a l l ” up−to−d a t e wi th t h e maximum
number o f s t e p s s u p p o r t e d .

@param ME The name o f t h e c l a s s we a r e add ing a ” l o c k s t r a p ” t o
@param LOCK The t y p e o f t h e l o c k (imp l ements t h e ” L o c k a b l e ”
c o n c e p t − i . e . , has a ” l o c k () ” and ” u n l o c k () ” member f u n c t i o n s .)

∗ /
define LCKSTRAPSIMP(ME, LOCK, . . .)

\

private : LOCK d locker ;
\

public : c l a s s l o c k e r {
\

ME &d me ;
\

public : l o c k e r (ME &me) : d me (me) { me. d locker . lock () ; }
\

˜ l o c k e r () { d me . d locker . unlock () ; }

8

\

GET MACRO(VA ARGS , LCKSTRAPSIMP9 , LCKSTRAPSIMP8 , LCKSTRAPSIMP7 ,
LCKSTRAPSIMP6 , LCKSTRAPSIMP5 , LCKSTRAPSIMP4 , LCKSTRAPSIMP3 ,
LCKSTRAPSIMP2 , LCKSTRAPSIMP1) (ME, VA ARGS) \

} ;
\

l o c k e r a c c e s s () { return l o c k e r (∗ t h i s) ; }
\

template <typename F> void with (F f) { f (l o c k e r (∗ t h i s)) ; }

endif / / ! d e f i n e d INC LCKSTRAP SIMPLE

9

	lockstrap
	Usage
	The simple implementation
	Why use simple at all?
	Remarks
	Implementation
	Discussion
	Why can't this be done with templates?
	C++03
	Is parameter of the with() to be passed by value or rvalue?

	Regular/full implementation
	Simple implementation

